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Recent experiments by Hammack et al. (J. Fluid Mech., vol. 532, 2005, p. 1) on deep-
water waves with two-dimensional, periodic surface patterns showed several features,
some of which were unsteady. Fuhrman & Madsen (J. Fluid Mech., vol. 559, 2006,
p. 391) explained three of these as being the consequence of sinusoidal forcing by
the wavemaker array that did not include forced harmonics, either in time or in the
direction parallel to the wavemaker. They predicted that neglected third-harmonic
terms cause more serious consequences than neglected second-harmonic terms when
the generated wavefields have two-dimensional surface patterns. This paper presents
experiments that provide strong evidence that their explanation is correct: including
the third-harmonic terms in the wavemaker forcing results in wave patterns that
propagate with nearly permanent form.

1. Introduction
In this paper we consider the laboratory generation of patterns of surface waves

that propagate with nearly permanent form on deep water and that have periodicities
in two horizontal dimensions. Such patterns have been observed in experiments
by Kimmoun, Branger & Kharif (1999a), who generated trains of plane waves
that reflected from a wall to create two-dimensional patterns, and by Hammack &
Henderson (2003) and Hammack, Henderson & Segur (2005, hereafter referred to as
HHS), who used a 32-plunger wavemaker array to generate patterns resulting from
the interaction of two trains of plane waves that were symmetric about the direction
of pattern propagation. Figure 1 shows a photograph of such a pattern from HHS.

Similar patterns of deep-water surface waves with two-dimensional surface structure
have also been generated through bifurcations of one-(horizontal) dimensional
wavetrains (Su 1982; Su et al. 1982). Other types of two-dimensional surface patterns,
termed ‘crescent waves’ or ‘horseshoe’ patterns, have been observed in experiments
on wind-generated waves by Caulliez, Ricci & Dupont (1998) and Collard & Caulliez
(1999). Additional types of wave patterns due to wind have been observed in
experiments by Caulliez & Collard (1999). Two-dimensional surface patterns are
becoming more and more important in our understanding of deep-water surface
waves, so it is important that we be able to generate them with quantitative accuracy
and control; this paper is part of that effort.
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Figure 1. A typical bi-periodic pattern of progressive surface waves in deep water.

Here we concentrate on the generation of two-dimensional surface patterns by an
array of mechanical wavemakers that are programmed to produce two trains of waves
interacting at symmetric, oblique angles from the direction of pattern propagation.
HHS catalogued twelve features of their patterns, some of which were unsteady.
Examples of the unsteady features were (i) slow modulations, or ‘beats’ of the wave
amplitudes in the x-direction, (ii) curving of crestlines in the y-direction, and (iii) dips
and peaks in the crestlines in the y-direction. An explanation for these unsteady
features was proposed by Fuhrman & Madsen (2006, hereafter referred to as FM),
who conducted numerical experiments using a Boussinesq-type model that is high
order in dispersion. They argued that the three unsteady features listed above occurred
because the forcing for the wavemaker array used only the first term from the infinite
series representing a wave of permanent form.

Even before FM, it was known that when attempting to generate steadily propagat-
ing waves with a wavemaker, the omission of higher harmonics from the forcing of the
wavemaker could lead to spurious ‘free’ wave modes that make the wavefield unsteady.
See Schäffer & Steenberg (2003) for a review of work that addresses the neglect
of second-harmonic terms when generating either planar or non-planar wavefields.
The new insight of FM was that for wavefields with two-dimensional surface patterns,
the neglect of third-harmonic terms can cause unsteady features that are even more
significant than the unsteady features resulting from the neglect of the second-
harmonic terms. They argued that it is the neglect of these third-harmonic terms
in the Stokes-type solution of two-dimensional surface patterns that caused the
unsteady features observed by HHS listed above. FM provided numerical evidence
that supports their hypothesis. Herein, we present experimental evidence that verifies
their hypothesis for the three unsteady features listed above.

The remainder of the paper proceeds as follows. In § 2 we outline the theoretical
framework required to discuss the FM predictions. The FM explanation of unsteadi-
ness is independent of additional experimental complications that are caused by the
presence of the wavemaker in the laboratory experiments and that could potentially
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contribute to unsteadiness. These issues are part of the overall problem of determining
a wavemaker forcing that will produce a permanent-form wavefield, which is generally
referred to as ‘the wavemaker problem’. The wavemaker problem and additional
experimental complications are briefly discussed in § 3. The particular wavemaker
and other experimental apparatus and procedures used herein are described in § 4. In
§ 5 we show comparisons of measurements and predictions by FM. The comparison
does not include considerations due to the boundary created by the wavemaker, so the
agreement shows that FM’s results are generic to two-dimensional surface patterns
formed by the interaction of trains of plane waves.

2. Aspects of FM’s theory
Waves at an air–water interface, such as those shown in the photograph of figure 1,

may be described by a classic boundary-value problem for irrotational motion of an
incompressible fluid with a free surface (of infinite horizontal extent that neglects the
boundary due to the presence of a wavemaker) subject to a gravitational restoring
force. (A problem formulation is given in HHS, for example.) Solutions of permanent
form for the velocity potential and the surface displacement of the air–water interface
may be obtained by expressing these unknowns as a power series expansion in a small
parameter, say ε. When two trains of plane waves interact at an angle, the surface
displacement can be written in the form

η(x, y, t) =

∞∑
j=1

εjη(j )(x, y, t). (1)

See Hsu, Tsuchiya & Silvester (1979), Roberts & Peregrine (1983), Roberts (1983),
Roberts & Schwarz (1983), Bryant (1985), Ioualalen (1993), Badulin et al. (1995), and
HHS for some of the coefficients in this series. For a symmetric surface pattern, the
first-order terms are

η(1)(x, y, t) =
a

2
cos(kxx + kyy − ωt) +

a

2
cos(kxx − kyy − ωt) = a cos(kyy) cos(kx − ωt),

(2)

in which two waves propagate with wavenumber vectors k =(kx, ky) and k = (kx, −ky)
at angles

θ = arctan(kx/ky) (3)

and −θ to the x-axis. These two waves form a pattern that propagates in the
x-direction with an amplitude variation that is trigonometric in y.

To satisfy the kinematic boundary conditions at the sidewalls (y = 0 and y =W ,
where W is the width of the tank), necessarily ky = nπ/W , with n= 0, 1, 2, . . . being the
number of nodal lines. Each nodal line (where the surface displacement vanishes) is
a straight line parallel to the x-axis; the wave pattern in figure 1 has four nodal lines:
at y = 1

8
W , 3

8
W , 5

8
W , 7

8
W . We note that although the wave pattern in this photograph

might look hexagonal, it is not – HHS showed with time series of measurements of
the surface displacement there that the nodal regions in figure 1 are straight lines.

To satisfy conservation of mass for an irrotational fluid and the boundary conditions
at the air–water interface, the frequency and wavenumber vector in (2) must satisfy
the linear dispersion relation,

ω2 =
√

gk tanh(kh), k =
√

k2
x + k2

y, (4)
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where g is the acceleration due to gravity, h is the water depth, and k is the magnitude
of the wavenumber vector.

In the experiments of HHS, the first-order terms in (2), with no higher harmonics,
were used to generate patterns like the one shown in figure 1 as described below in § 4.
FM discussed the effects of HHS’s neglecting the second- and third-order terms of the
expansion in their wave generation. In particular, FM predicted that one third-order
term is responsible for causing the three unsteady features listed in § 1. Since our
concern here is to test this prediction, we do not write down the second-order terms
(equation (4.1) of FM). Instead, the third-order terms, from (4.9) of FM, are

η(3)(x, y, t) =
a3k2

2
[b11 cos(kyy) cos(kxx − ωt) + b13 cos(3kyy) cos(kxx − ωt)

+ b31 cos(kyy) cos(3kxx − 3ωt) + b33 cos(3kyy) cos(3kxx − 3ωt)]. (5)

FM stated that neglecting the terms in (5) in the experimental wave generation leads
to the release of spurious free waves of the form

η
(3)
free(x, y, t) = −a3k2

2
[b13 cos(3kyy) cos(k13x − ωt)

+ b31 cos(kyy) cos(k31x − 3ωt) + b33 cos(3kyy) cos(k33x − 3ωt)], (6)

where (k13, 3ky, ω), (k31, ky, 3ω), (k33, 3ky, 3ω) each satisfy (4). FM proposed that the
first term in (6) is the cause of the three unsteady features, because of the mismatch
between k13, the x-wavenumber that arises in the spurious free wave, and kx , the
x-wavenumber in the corresponding term of the third-order wave solution. For a
travelling wave of permanent form, every term in the expansion must be bound to
the first-order term as a higher harmonic of that term. (Sometimes the harmonics
are called ‘bound waves’.) So, the harmonic term with the wave vector (kx, 3ky) does
not satisfy the linearized dispersion relation (3) with frequency ω, and it travels
at the speed of the first-order term. But the spurious free wave with wave vector
(k13, 3ky) does satisfy the linear dispersion relation (4) with frequency ω and travels
at a corresponding free-wave speed. So, the spurious free wave travels at a different
speed and is not bound to the first-order solution. The difference between k13 and kx

causes the modulation or ‘beat’ of the wavetrains in the x-direction. This beat is the
first unsteady feature listed in § 1. In their (4.14), FM predict the beat length to be

LB = Lx

sin θ

sin θ −
√

1 − 9 cos2 θ
, (7)

where Lx = 2π/kx . They also predict the beat amplitude to be

aB =
a3k2

2
|b13| (8)

where b13 is given by (5.1) of FM.
The second unsteady feature listed in § 1 is the curving of crestlines, which can be

seen in figure 5(a), below. FM explained this observed curving of crestlines as being
due to the phase of the spurious b13-term in (6) relative to the corresponding bound
b13-term in (5): “If the peak of the spurious free wave at a given location is slightly
in front of or behind a primary wave crest, it will respectively appear to bend it
frontwards or backwards.” FM stated that the third unsteady feature, dips and peaks
in the crestlines in the y-direction, also occurs when the spurious free b13-term and
the bound b13-term are out of phase.
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HHS derived coupled nonlinear Schrödinger equations to describe their experi-
ments. They computed the surface displacement to third order, based on the exact
solution of the coupled nonlinear Schrödinger equations that yields (2). Their com-
putations of the surface displacements, which had third-order terms corresponding
to (5), accounted for a slight curving of crest lines and for dips and peaks in the
crest lines. However, FM rightly point out that when the amplitude is large enough
so that the third-order solution exhibits such features, then one has not carried the
expansion out to high enough orders for it to be applicable to the physical problem.
For example, large-amplitude solutions from a 27th-order expansion (Roberts 1983)
do not exhibit such features. See FM for additional references that discuss this point.
HHS also discussed instability of the exact solution as being a potential explanation
for their observed unsteadiness. The stability of wavefields produced by obliquely
interacting wavetrains is examined, for example, by Ioualalen & Kharif (1994), who
classified instability regimes based on wave steepness, Kimmoun, Ioualalen & Kharif
(1999b), who extended their work, and others listed in these references. Nevertheless,
FM pointed out that the unsteadiness observed in the experiments of HHS occurred
directly off the paddle; it did not grow on the time scales predicted by these stability
analyses.

3. Wavemaker considerations
The theory outlined above introduces one consideration when generating periodic

wavetrains of permanent form in a laboratory. Several additional considerations arise
from the presence of the time-dependent boundary at the wavemaker, and the finite
length and width of the wave basin. These considerations comprise ‘the wavemaker
problem’, in which one determines the wavemaker motion that results in a desired
waveform. A variety of mechanical wavemakers are used in laboratories: piston-type
wavemakers (that move horizontally) are typically used for waves in shallow water;
plungers (that move vertically) and flaps are typically used for waves in deep water.

Linearized theories that include a boundary due to the wavemaker provide pre-
dictions of wave amplitude radiating away from the wavemaker, the shape of the
evanescent modes trapped at the wavemaker for a given wavemaker amplitude,
and the power required by particular wavemaker geometries. Linearized wavemaker
theory is presented, for example, by Dean & Dalrymple (1984, especially pp. 170–186).
Experimental confirmation of far-field wave amplitude predictions is provided, for
example, by Ursell, Dean & Yu (1960), Galvin (1964, as referenced by Sulisz &
Hudspeth, 1993), Keating & Weber (1977), Patel & Ioannou (1980), Hudspeth,
Leonard, & Chen (1981), and Henderson & Lee (1986) for piston and flap-type
wavemakers.

Plunger-type wavemakers, like those used herein and in HHS, are more difficult
to treat analytically because, unless they are very thin or very wide, the domain that
includes them is not separable with respect to the horizontal and vertical dimensions,
even in the linearized problem. Wang (1974) and Wu (1988, 1991) solved approximate
linear problems numerically. Experiments were conducted by Wang (1974), Patel &
Ioannou (1980), Ellix & Arumugam (1984), and Pritt (2003). Ellix & Arumugam
found that leakage behind the wavemaker, the superharmonic component of the
waves, and reflections from the beach needed to be considered in their comparisons
with theory. Pritt, who used a triangular plunger with the same controller as used by
HHS and by us, found that agreement with theory depended on whether the wave
frequencies were below or above 5 Hz where surface tension effects became important,
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and whether experiments below 5 Hz were conducted on ‘dirty’ or ‘clean’ water so
that viscous effects were or were not important.

All of this work is for wavemakers that produce plane waves. Segmented wave-
makers can be used to generate waves with two-dimensional surface patterns. (See
figure 1 for both a segmented wavemaker array, and the surface pattern created by it.)
These wavemakers involve additional considerations, even in the linearized problem.
For example, Gilbert (1976, as quoted by Schäffer & Steenberg 2003) found that
spurious modes were generated due to the finite segment widths.

The nonlinear wavemaker problem involves finding a prescribed paddle motion
of finite amplitude that produces a desired wavefield, also of finite amplitude. The
second-order theory was developed first by Fontanet (1961, as referenced by Sulisz &
Hudspeth, 1993). See Schäffer (1996) and Schäffer & Steenberg (2003) for literature
reviews. Several issues arise when considering nonlinear effects. The primary one is to
obtain a proper wavemaker forcing that suppresses spurious harmonic modes. There
has been much work on this problem. An example of experimental confirmation is
in Schäffer (1996), who showed time series obtained from experiments using first-
and second-order forcing signals, derived in the same paper, to generate waves
with a piston wavemaker that propagated in one horizontal dimension. His results
show the suppression of spurious second-harmonics by the nonlinear forcing, for
monochromatic waves, for wave groups, and for irregular wavefields (multi-frequency
wavefields) corresponding to JONSWAP spectra. In addition to the suppression of
spurious modes, other nonlinear wavemaker issues include: the effects of the first-
order evanescent wavefield on the second-order solution (e.g. Sulisz & Hudspeth
1993); Stokes drift and return flows in wave flumes (e.g. Hudspeth & Sulisz 1991 and
Sulisz & Hudspeth 1993); the effects of sidewall reflections (e.g. Li & Williams 1998);
sum and difference interactions among generated waves with different frequencies (e.g.
Moubayed & Williams 1994 and Schäffer 1996); and mechanical wave absorption of
unwanted radiated waves (e.g. Schäffer 1998). Schäffer & Steenberg (2003) generalized
the work of Schäffer (1996) to obtain second-order motions for piston and flap-type
wavepaddles that can generate multidirectional, irregular wavefields. FM considered
the effects of spurious modes generated by neglecting third-order terms in the
wavemaker forcing (in the absence of the boundary due to a particular wavemaker
geometry). As discussed in § 2, they showed that for waves with two-dimensional
surface patterns, the consequences of neglecting third-order terms are even more
pronounced than those of neglecting the second-order terms.

The success of any forcing function in producing a desired waveform depends on
the quality of control provided to the wavemaker. Mechanical systems have their own
nonlinearities, and may therefore input their own harmonics, which would appear as
additional spurious free waves in the wavefield. Flick & Guza (1980) discuss this point.

In some experiments, the desired waveform is an exact solution to a nonlinear
evolution equation. Such solutions necessarily include higher harmonics in their
descriptions. Goring & Raichlen (1980) found that they could produce clean cnoidal
waves (as periodic solutions to the KdV equation) with a piston wavemaker by
programming the wavemaker with the cnoidal wave solution and accounting for
the finite displacement of the wavemaker. This procedure was used by Hammack
et al. (2004) to generate clean solitons as localized solutions of the KdV equation
using a piston wavemaker. Hammack, Scheffner & Segur (1989) attempted to use
the procedure to generate bi-periodic patterns of waves in shallow water. They
programmed their 60-piston wavemaker array with the genus-2 solutions of the KP
equation, taking into account the finite displacement of the wavemakers. However,
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they reported that cleaner patterns resulted from the oblique interaction of cnoidal
waves instead. Nevertheless, their measurements of the resulting patterns agreed well
with the KP solution.

Previous experiments on deep-water waves using plungers with triangular and
exponential cross-sections did not seem to suffer from the contamination of spurious
modes due to the neglect of second-order harmonics. In particular Segur et al. (2005)
conducted experiments with such wavemakers using monochromatic wavetrains with
and without modulations (two nearby sideband modes). They did not account for
spurious harmonics, but observed very good agreement, with no free parameters,
between Fourier amplitudes obtained from measured time series, including the ampli-
tude of the second harmonic, and predictions from nonlinear theories. In contrast,
earlier deep-water experiments by Lake & Yuen (1977) measured second-harmonic
amplitudes that did not agree with the prediction from Stokes expansion.

Segur et al. (2005) found that dissipative effects must be incorporated into the
nonlinear Schrödinger model for the evolution of deep-water waves to predict, both
qualitatively and quantitatively, measured wave evolutions. Henderson & Lee (1986)
and Pritt (2003) found that comparisons of measurements of far-field amplitudes with
prediction from the linear wavemaker problem were affected by the ‘cleanliness’ of
the water. So, damping is also a consideration in designing a wavemaker motion to
produce a desired waveform. Damping is particularly important in the 4 Hz motions
used in the HHS experiments and those herein. Viscous effects have been included
in numerical wave tanks, for example by Park et al. (2004) and references listed
therein, who integrated the Navier–Stokes equations and allowed for fully nonlinear
multi-directional waves.

In this section, we have discussed briefly some of the issues that arise when attempt-
ing to generate a desired waveform with a mechanical wavemaker. The spurious free
modes caused by neglecting harmonics in the wavemaker forcing are an important
issue. Suprisingly, FM found that third-harmonic terms are more important than
second-harmonic terms when the wavefields have two-dimensional surface patterns.
The spurious modes are present regardless of the wavemaker geometry; however,
knowing how to control the wavemaker to suppress them means solving the nonlinear
wavemaker problem for the particular wavemaker geometry. HHS and we use a
plunger-type wavemaker array for which neither the linearized nor the nonlinear
theory has been worked out. The effects of the interactions between first-order
evanescent fields generated by each wave and their interactions with the second and
third harmonics of the wavefields are not known. The wavemaker array is segmented,
a situation that can introduce additional spurious free modes that were not accounted
for in FM’s work. The parameter regime of the experiments is such that dissipative
effects are important. Nevertheless, in the remainder of the paper, we report on
experiments that consider only the issue of spurious free modes resulting from the
neglect of third-harmonic terms, as discussed by FM, and find that by including them,
we can generate waves with two-dimensional surface patterns that propagate with
nearly permanent form in deep water.

4. Experiments
Experiments to test the predictions of FM were conducted in the tank used by HHS,

shown in figure 1: a wave basin that is 12 ft long, W = 6 ft wide, and 1 ft deep with
an undisturbed water depth of h = 20 cm. Along one 6 ft endwall is a segmented wave-
maker comprising 32 side-by-side, vertically oscillating triangular wedges (paddles)
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that intersect the water surface. The motion of each paddle is independently pro-
grammable and controlled so that the segmented wavemaker can generate complex
wavefields comprising multiple waves propagating at arbitrary angles. (Details of the
apparatus are presented in HHS.)

HHS generated two-dimensional surface patterns using one or the other of two
types of forcings. For the one corresponding to (2), the vertical displacement of the
j th paddle with 1 � j � 32 was given by

Zj = ap cos(kyyj ) cos(ωt), (9)

with yj corresponding to the y-location of the middle of the j th paddle. The velocities
of the wavepaddles were obtained by using a similarly digitized version of the time-
derivative of (9). This forcing function produced the photograph shown in figure 1.
Here, ap is the amplitude of the paddles’ oscillations, not those of the water wave. We
note that no x-wavenumber or x-dependence is shown in (9). We control frequency
only; wave dynamics determines wavenumbers.

To test the prediction by FM, we programmed the wavemaker according to (9), and
then compared the results of those experiments with other experiments in which we
modified the wavemaker forcing function. The modification included a term like the
b13-term in (5), identified by FM as the term whose neglect caused the three unsteady
features. So in the modified experiments, we forced the paddle according to

Zj = ap cos(kyyj ) cos(ωt) + a3
p cos(3kyyj ) cos(ωt), (10)

with the velocities of the wave paddles obtained by using a similarly digitized version
of the time-derivative of (10). We note that the additional term, which is one of the
third harmonics of the fundamental, has the same frequency as the fundamental; it
is a third harmonic in its y-spatial dependence.

The experimental procedure was as follows. We cleaned the tank with alcohol and
filled it with tap water to a depth greater than 20 cm. Before each set of experiments,
we cleaned the air–water interface using a piece of brass angle that spans the tank in
the y-direction. It is mounted on bearings that roll along fixed railings on each 12 ft
side of the tank. The brass angle is parallel to the wave paddles and was lowered
until it intersected the water surface. We rolled the brass angle down the tank in
the x-direction, scraping the surface and any film or particles on it to the end of
the tank. We vacuumed the surface at the end using a wet-vac. Then we rolled the
brass angle back to the paddles and vacuumed the surface in that region until the
depth of water was 20 cm. Then we lifted the brass angle away from the surface.
We conducted experiments within a 2 hour period after cleaning the surface. (Segur
et al. 2005 showed that the rate of wave damping remains approximately constant for
about 2 hours). Then we added water, cleaned the surface again and conducted more
experiments in another 2 hour period. In this way, we used the same water for days,
but always started with a ‘clean’ surface. This procedure allowed reproducible results.

We generated wave patterns using either (9) or (10). We measured wavefields
using capacitance-type wave gauges supported above the basin on a carriage that
moved in the x-direction to investigate the beats that arise in x (the direction
of propagation), or in the (negative) y-direction to investigate the dips and peaks
that occur on crestlines (approximately) parallel to the paddle array. The carriage
speed was constant, typically in the range of 7–10 cm s−1 during traverses in the
x-direction, with variations due to the experimental parameters; it was 4.0 cm s−1

during traverses in the y-direction. Each wave gauge measured the instantaneous
water-surface displacement at a ‘point’ (a circular area of about 1 mm diameter).
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Gauge number x (cm) y (cm)

gauge1x 46.3 61.0
gauge2x 46.3 121.8
gauge3x 46.3 91.4
gauge4x 29.0 91.4
gauge1y 29.5 153.9
gauge2y 48.5 153.9
gauge3y 86.5 153.9

Table 1. Initial location of the gauges with (x, y) = (0, 0) as shown in figure 1.

For the experiments in which we investigated beat lengths, there were four gauges
available, which we call ‘gaugemx ’ with m =1, 2, 3, 4. Their initial positions in the
wavetank, relative to the coordinate system shown in figure 1, are given in table 1.
Two of the gauges (3x and 4x) were in nodal lines during experiments with an odd
number of nodal lines in the tank. For the experiments in which we investigated dips
and peaks along the crestlines, three gauges were available, which we call ‘gaugemy ’
with m = 1, 2, 3. We also used this gauge configuration for the experiment in figure 2.
Their initial positions are also listed in table 1.

5. Results
In this section we compare our measurements with the predictions of FM. In

particular, we discuss five features of the wave patterns. FM predicted (i) the existence
of beats in the wavefields along an axis parallel to the x-axis, and how to program
the wavemakers to generate wavetrains with no beats. They further predicted (ii)
the beat lengths and (iii) the beat amplitudes. FM predicted the existence of both
(iv) curved crestlines and (v) dips and peaks in the crestlines along an axis parallel
to the y-axis, as well as how to program the wavemakers to remove them. In this
section we verify (i), (ii), (iv), (v), and find some disagreement between measurements
and predictions for (iii). These are our main results.

5.1. Beats

The infinite series in (1) that represents a travelling wave pattern of permanent form
and that has a first-order term given by (2) has oscillations in x with an amplitude
that is constant in x. HHS showed, by traversing a measuring gauge through the wave
pattern in the x-direction, that the wave envelope exhibited a slow modulation, or
‘beat’, on the amplitudes of the oscillation in that direction. Our experiments exhibit
the same behaviour; figure 2 shows time series from gauge1y in three experiments
as it traversed in the x-direction at a speed of v = 9.22 cm s−1. The carriage began
moving a few seconds after the waves reached the gauges, so there is a Doppler shift
in the signal near the beginning of the time series. At about 23 s, the waves that had
reflected off the back wall of the tank reached the gauges. These constraints gave us
about a 200 cm interval in x in which to observe the beats.

Figure 2(a) is obtained from an experiment using the forcing of (9). A beat is
evident in the time series, directly off the paddles. Figures 2(b) and 2(c) are obtained
from second and third experiments using the forcing of (10). The presence of the
b13-type term in the forcing decreased the beat amplitude as shown in figure 2(b). An
increase in the magnitude of the b13-term caused the beat to essentially disappear, as
shown in figure 2(c). A further increase in the magnitude of the b13-term caused the
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Figure 2. Time series of a 4 Hz pattern with ω = 4(2π) s−1, θ =82.1◦, n= 5. (a) ap =0.80 cm,
a3

p = 0 cm. (b) ap = 0.80 cm, a3
p = −0.10 cm. (c) ap = 0.80 cm, a3

p = −0.20 cm.

beat to reappear (not shown). In general, to determine the forcing amplitude of the
b13 term, a3

p , that corresponds to the predicted beat amplitude, we did the following.
(i) We chose ap . In the experiment that does not include the b13-type term in the

forcing, we found the resulting water wave amplitude, a, of the 4 Hz wave, obtained
from a Fourier transform of the time series.

(ii) Using a from (i) and b13 from (5.1) of FM, we used (8) to compute the beat
amplitude, aB , generated by the b13 term in (5).

(iii) The b13-type term has the same paddle oscillation frequency as the fundamental.
So, using (i) and (ii) we can extrapolate a ‘predicted’ forcing amplitude of the b13

term to be

a3
p = aBap sgn(b13)/a. (11)

For the experiments shown in figure 2, ap =0.80 cm, a = 0.39 cm and aB =0.08 cm, so
that a3

p = −0.16 cm. This ‘predicted’ value lies between the two used in figures 2(b)
and 2(c).

From time series such as those in figure 2, we measured the beat length LB and
beat amplitude aB as a function of mode number n, or correspondingly, angle θ , (3),
of the two interacting waves. First, we estimated the values by eye directly from the
time series. Second, we employed a multi-resolution wavelet analysis of the envelope
of the data to obtain more objective measures for the beat lengths. It consisted of
(i) obtaining the envelope of the time series by extracting the maximum excursions
of the water surface during each carrier-wave period; (ii) decomposing the envelope
via a Daubechies discrete wavelet transform (db5) (see, for example, Mallet 1999);
(iii) reconstructing an approximate envelope from the coefficients that corresponded
to the length scale of the beat that was visible to the eye; (iv) computing a Fourier
transform of this approximate envelope. The beat length corresponded to the
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Figure 3. Prediction and measurements of beat lengths. The prediction (curve) is from
(7). Measurements are from gauge1x (triangles); gauge2x (squares); gauge3x (stars); gauge4x

(diamonds).

periodicity with the peak of that transform. Third, the beat amplitudes were acquired
by assuming the time series was a sum of the carrier wave and a beat. A MATLAB
optimization routine then returned a beat amplitude that minimized the difference
between the measured time series and the assumed time series. The results for both
beat length and beat amplitude were consistent with our initial ‘by eye’ estimates.

Figure 3 shows the results for beat length. The agreement between measurements
and predictions from (7) is good for angles below about 82◦. For higher angles (7)
overestimates the observed beat length. FM found very good agreement between (7)
and results from their numerical simulations of a dispersive Boussinesq system of
equations, and also found that (7) overestimated LB at higher angles. They could
obtain better agreement at higher angles by decreasing the wave amplitude. We looked
for an amplitude dependence on beat length for the n=7, θ = 78.9◦ case and for the
n= 4, θ = 83.7◦ case, but did not observe one. For our experiments, the measurement
interval was comparable to or shorter than the predicted beat length for angles θ

exceeding about 83◦, so it was difficult to resolve a beat length for these experiments.
Further, FM warn that disagreement for θ → π/2 is perhaps expected, since the
perturbation solution has a zero radius of convergence in that limit.

Figure 4 shows the results for the beat amplitude. The solid points are from pre-
dictions using (8) and the measured values of a for the particular experiment. The
hollow symbols are measurements from two gauges as indicated. Here the predictions
generally underestimated the measured beat amplitudes. The discrepancy is likely to
be due to the difference in boundary conditions at the wavemaker from the numerical
simulations of FM and the plunger array used in the experiments (see § 3).

5.2. Curved crestlines

The infinite series in (1) that represents a travelling wave pattern of permanent form
and that has a first-order term given by (2) has crestlines parallel to the y-axis with
no curvature in the horizontal. Crestlines in the experiments of HHS did exhibit
curvature in the horizontal, and FM explained this non-uniformity with the b13-type
term. An example from our experiments is shown in figure 5, which is photographs
of the bottom of the wavetank during two experiments. One can see a large-scale
pattern, the wavefield under consideration here, and waves with a smaller length scale
superposed. The waves propagated from right to left. The bright lines in the page’s
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Figure 4. Predictions (solid circles) and measurements of beat amplitudes. Measurements
are from gauge1x (triangles) and gauge2x (squares).

(a) (b)

Figure 5. Photograph of the bottom of the tank showing crest lines for a 4 Hz pattern with
ω = 4(2π) s−1, θ =82.1◦, n= 5. (a) ap =0.40 cm, a3

p = 0 cm. (b) ap = 0.40 cm, a3
p = −0.05 cm.

vertical direction, approximately parallel to the wavemaker array, correspond to the
crestlines at the water surface, which is visible at the top of the pictures.

Figure 5(a) is from an experiment in which the wavemaker forcing corresponded to
(9). The crestlines exhibited a non-uniform curvature similar to those from numerical
computations that FM showed in their figure 2. Figure 5(b) is from an experiment in
which the wavemaker forcing corresponded to (10). The crestlines are straight. For
this experiment, ap =0.40 cm and a =0.21 cm, so that aB = 0.012 cm. Using (11) we
compute the prediction a3

p = −0.02 cm. In figure 5(b) we used a3
p = −0.05 cm. (We

did not do an experiment with a3
p = −0.02 cm.) So, the presence of a b13-type term

made the wavefield more nearly uniform than it was without that term, as predicted
by FM.

5.3. Dips and peaks along crestlines

The infinite series in (1) that represents a travelling wave pattern of permanent form
and that has a first-order term given by (2) has crestlines with a single maximum
in each period in the y-direction. The experiments of HHS gave measurements of
crestlines with dips in the middle and peaks near the nodal lines of each period.
FM explained these dips and peaks with the b13-type term. An example from our
experiments is presented in figure 6, which shows time series obtained from three
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Figure 6. Time series from three gauges for a 4Hz pattern with ω =4(2π) s−1, θ = 82.1◦,
n= 5. (a) Gauge1y , (b) gauge2y , (c) gauge3y: ap = 0.80 cm; a3

p = 0. (d) Gauge1y , (e) gauge2y ,
(f ) gauge3y: ap = 0.80 cm; a3

p = −0.15 cm.

gauges (gaugemy , m = 1, 2, 3) in two experiments in which the gauges traversed the
tank in the y-direction. The gauge locations are listed in table 1.

In the experiment shown in figure 6(a–c), the b13-type term was not included in
the wavemaker forcing. This experiment used the same parameters as that shown
in figure 2(a), and resulted in a wave amplitude of a = 0.38 cm. Gauge1y (with
x = 29.5 cm) measured a y-variation of the crestlines characterized by dips in each
antinodal region with corresponding peaks near the nodal regions. Gauge2y (with
x = 48.5 cm) measured a similar time series with a less pronounced arrangement of
dips and peaks. Gauge3y (with x = 86.5 cm) measured a time series that did not have
dips and peaks, but had an asymmetric cosine variation in the y-direction. So, the
pattern had a y-structure that is not present in the infinite series representation in (1).
Further, this structure varied with x, in contrast to the infinite series representation.

In the experiment shown in figure 6(d–f ) the b13-type term was included in the
wavemaker forcing. The dips and peaks did not disappear, but the resulting time series
from the gauge-traverse in the y-direction had a wave amplitude that was much nearer
to constant in the y-direction. In addition, the variation at the different x-locations
of the three gauge sites was significantly reduced. So, the inclusion of the b13-type
term resulted in a nearer to permanent-form solution. FM explained the remaining
dips and peaks as the effects of even higher-order harmonics not included in the
wavemaker forcing. In the experiment of figure 6(a–c), ap = 0.80 cm and a = 0.38 cm,
so that aB = 0.012 cm. Using (11), we obtain a predicted a3

p = −0.15 cm. This is the
value that we used in the experiment of figure 6(d–f ).
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Fontanet, P. 1961 Theórie de la génération de la houle cylindrique par un batteur plan. La Houille
Blanche 16, 3–31.

Fuhrman, D. R. & Madsen, P. A. 2006 Short-crested waves in deep water: A numerical investigation
of recent laboratory experiments. J. Fluid Mech. 559, 391–411 (referred to herein as FM).

Galvin, C. J. 1964 Wave-height prediction for wave generators in shallow water. Tech. Mem. 4,
pp. 1–20. US Army Corps of Engineers, Washington, DC, USA.

Gilbert, G. 1976 Generation of oblique waves. Tech.l Rep. 18. Hydraulic Research Station,
Wallingford, UK.

Goring, D. G. & Raichlen, F. 1980 The generation of long waves in the laboratory. Proc. 17th
Intl Conf. Coastal Engrs, Sydney, Australia.

Hammack, J. & Henderson, D. 2003 Experiments on deep-water waves with two-dimensional
surface patterns. J. Offshore Mech. Arctic Engng Special issue: J. V. Wehausen Symposium on
Water Waves, Ship Waves, and Marine Hydrodynamics 125, 48–53.

Hammack, J. L., Henderson, D. M., Guyenne, P. & Yi, M. 2004 Solitary-wave collisions. Proc.
ASME Offshore Mechanics and Arctic Engineering: A Symposium to Honor Theodore Yao-Tsu
Wu. World Scientific.

Hammack, J. L., Henderson, D. M. & Segur, H. 2005 Progressive waves with persistent two-
dimensional surface patterns in deep water. J. Fluid Mech. 532, 1–52 (referred to herein as
HHS).

Hammack, J., Scheffner, N. & Segur, H. 1989 Two-dimensional periodic waves in shallow water.
J. Fluid Mech. 209, 567–589.

Henderson, D. M. & Lee, R. C. 1986 Laboratory generation and propagation of ripples. Phys.
Fluids 29, 619–624.

Hsu, J. R., Tsuchiya, Y. & Silvester, R. 1979 Third-order approximation to short-crested waves.
J. Fluid Mech. 90, 179–196.

Hudspeth, R. T., Leonard, J. W. & Chen, M.-C. 1981 Design curves for hinged wavemakers:
Experiment. J. Hydraul. Div. ASCE 107, 553–574.

Hudspeth, R. T. & Sulisz, W. 1991 Stokes drift in two-dimensional wave flumes. J. Fluid Mech.
230, 209–229.

Ioualalen, M. 1993 Fourth order approximation of short–crested waves. C. R. Acad. Sci. Paris II
316, 1193–1200.

Ioualalen, M. & Kharif, C. 1994 On the subharmonic instabilities of steady three-dimensional
deep water waves. J. Fluid Mech. 262, 265–291.

Keating, T. & Weber, N. B. 1977 The generation of periodic waves in a laboratory channel:
a comparison of theory and experiment. Proc. Inst. Civil Engrs 63, 819–832.

Kimmoun, O., Branger, H. & Kharif, C. 1999a On short-crested waves: Experimental and
analytical investigations. Eur. J. Mech. B 18, 889–930.

Kimmoun, O., Ioualalen, M. & Kharif, C. 1999b Instabilities of steep shortcrested surface waves
in deep water. Phys. Fluids 11, 1679–1681.

Lake, B. M. & Yuen, H. C. 1977 A note on some water–wave experiments and the comparison of
data with theory. J. Fluid Mech. 83, 75–81.

Li, W. & Williams, A. 1998 Second-order three-dimensional wavemaker theory with side-wall
reflection. Proc. 8th Intl Offshore and Polar Engng Conf. Montreal Canada, pp. 235–241.



Laboratory generation of progressive surface waves 427

Mallet S. 1999 A Wavelet Tour of Signal Processing. Academic.

Moubayed, W. I. & Williams, A. N. 1994 Second-order bichromatic waves produced by a generic
planar wavemaker in a two-dimensional wave flume. J. Fluid Struc. 8, 73–92.

Park, J. C., Uno, Y., Sato, T., Miyata, H. & Chun, H. H. 2004 Numerical reproduction of fully
nonlinear multi-directional waves by a viscous 3D numerical wave tank. Ocean Engng 31,
1549–1565.

Patel, N. H. & Ioannou, P. A. 1980 Comparative performance study of paddle- and wedge-type
wave generators. J. Hydraul. 14, 5–9.

Pritt, T. D. 2003 Linear wavemaker problem for triangular and exponentially shaped wavemakers.
MA.Thesis, Penn State University.

Roberts, A. J. 1983 Highly nonlinear short-crested water waves. J. Fluid Mech. 135, 301–321.

Roberts, A. J. & Peregrine, D. H. 1983 Notes on long-crested water waves. J. Fluid Mech. 135,
323–335.

Roberts, A. J. & Schwarz, L. W. 1983 The calculation of nonlinear short-crested gravity waves.
Phys. Fluids 26, 2388–2392.
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